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Abstract
High performance transparent electrodes (TEs) with figures-of-merit as high as 471 were
assembled using ultralong silver nanowires (Ag NWs). A room-temperature plasma was
employed to enhance the conductivity of the Ag NW TEs by simultaneously removing the
insulating PVP layer coating on the NWs and welding the junctions tightly. Furthermore, we
developed a general way to fabricate TEs regardless of substrate limitations by transferring the
as-fabricated Ag NW network onto various substrates directly, and the transmittance can
remain as high as 91% with a sheet resistivity of 13 �/sq. The highly robust and stable
flexible TEs will have broad applications in flexible optoelectronic and electronic devices.

S Online supplementary data available from stacks.iop.org/Nano/24/335202/mmedia

(Some figures may appear in colour only in the online journal)

1. Introduction

Owing to the rapid development of flexible optoelectronic and
electronic devices, emerging transparent flexible electrodes
based on conducting polymers [1, 2], carbon nanotubes
(CNTs) [3–6], graphene [7, 8], metal grids and metallic
nanowires (NWs) [9–15] are of increasing importance
for applications in these fields, and they can retain the
attractive features of commercial indium-doped tin oxide
(ITO) transparent electrodes (TEs) such as high electrical
conductivity and optical transmittance (T), while also
overcoming the shortcomings of ITO TEs such as the scarcity
and high cost of indium, and its inherent brittleness [16–18].

To implement practical applications of flexible TEs,
the balance between the optimal T and sheet resistivity
(Rs) needs to be addressed due to the fact that these two
critical parameters typically follow opposite trends. In the

3 These authors contributed equally to the work.

pursuit of improving T and simultaneously lowering Rs to
achieve a high performance of TEs with T ≥ 90% and Rs ≤

100 �/sq [19], recently developed Ag NW networks have
attracted intense interest due to their excellent T and Rs
compared with their conventional counterparts [11, 20–23].
However, they still suffer from issues such as percolation
and large inter-nanowire contact resistances [9, 16, 24, 25].
Moreover, the widely used solution-based fabrication tech-
niques have certain requirements for the substrates, for
instance, the substrates should be resistant to stress and high
temperature [11, 12, 14, 19, 26], possess good wettability for
the dispersions [9, 27–29], and the surface geometry should
typically be flat for uniform deposition of Ag NWs.

In order to tackle these challenges, in this work we
present an optimized approach to synthesize ultralong Ag
NWs, which can be assembled into a highly transparent
network with low Rs after removing the insulating polymer
layer on the Ag NWs and welding the junctions by plasma
treatment at room temperature. It is of particular importance
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Figure 1. Morphology characterizations of the as-prepared Ag NWs. (a) SEM image of top view of as-prepared Ag NWs on a silicon
substrate and their suspensions in alcohol (inset). (b) High-magnification SEM image of Ag NWs. (c) TEM image and SAED pattern (inset)
of Ag NWs. (d) Histogram of statistics relating to the length and diameter (inset) of the Ag NWs.

that the as-fabricated robust Ag NW TEs can be transferred
to various substrates without severe performance degradation,
and T can remain as high as 91% with an Rs only of 13 �/sq.
These results suggest a generic way to remove the substrate
limitations for the fabrication of TEs, and greatly broaden
the range of applications of high performance TEs in flexible
devices.

2. Experimental procedure

2.1. Synthesis of ultralong Ag NWs

Here, a modified CuCl2-mediated polyol process was used
to prepare long Ag NWs [22]. For a typical synthesis,
polyvinylpyrrolidone (PVP, 0.26 g, Mw ∼ 1300 000) and
Cu(NO3)2 (0.6 mg) were added sequentially to a flask and
filled with ethylene glycol (80 ml), then the mixture was
stirred moderately for 5 min. The solution was then heated
at 180 ◦C for half an hour, and cooled to room temperature
in a glass dryer. AgNO3 powder (0.24 g) was then added to
the solution with vigorous stirring for 10 min until the powder
was fully dissolved. Then the solution was sealed in a bottle
and kept at 145 ◦C for 7 h in an oven. Finally, the obtained
products were washed with acetone and alcohol several times,
then stored in alcohol for use, as shown in the inset in
figure 1(a). The morphology, structure and composition of
the samples were probed by a high-resolution field emission
scanning electron microscope (SEM, FEI Nova NanoSEM
450) and a high-resolution transmission electron microscope
(HRTEM, Tecnai G2 20 U-TWIN).

2.2. The effect of plasma treatment on the properties of Ag
NW TEs

The glass substrate was placed onto a hot plate at 92 ◦C and
a few microliters of Ag NW ink was dropped on a Meyer
rod with a micropipette. The Meyer rod was either pulled or
rolled over the ink along one direction, then an equal volume
Ag NW ink was also deposited on the substrate by rolling the
Meyer rod along the orthogonal direction. Next, the obtained
TE was treated by plasma irradiation for 1 h with a power of
75 W. Increasing the power or introducing oxygen into the
plasma could shorten the treatment time, but the Ag NWs will
be easily oxidized and the TE will be destroyed. The optical
transmittance spectra were recorded using a SHIMADZU
UV-2550. In all cases, a glass substrate was used as the
reference to measure the regular transmittance. The Rs of the
Ag NW TEs was measured by an Agilent U1252 hand-held
digital multimeter.

2.3. Procedure for transferable Ag NW TEs

The Ag NW TEs were fabricated on Al-coated polyethylene
terephthalate (PET) sheet with a thickness around 100 µm
following the aforementioned process. A thin polydimethyl-
siloxane (PDMS) layer was coated on the three edges of
the network and cured at 80 ◦C for half an hour; then the
edge left without PDMS could release the bubbles produced
during the etching reaction. Next, the sample was carefully
and slowly inserted in an etching solution of NaOH (2 wt%)
and sodium dodecyl benzene sulfonate (0.1 g ml−1) for
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Figure 2. The effect of plasma treatment on the properties of Ag NW TEs. (a) A schematic of the Ag NW TE preparation process. (b) SEM
images of welded Ag NWs and (c) zoomed-in view of a welded junction. (d) FT-Raman spectra of a Ag NW TE before and after plasma
treatment. (e) Plasma irradiation time versus Rs of Ag NWs (inset: I–V curves of the TE before and after plasma treatment). (f) The optical
transmittance spectra with different Ag NW weight densities (inset: the relationship between transmittance and Ag NW weight densities).
(g) Rs as a function of T with an added linear fitting of T−0.5

− 1 and 1/Rs.

8 h until the Al layer was completely dissolved, in which
the surfactant can prevent the Ag NWs from adhering to
the PET. The etching solution was neutralized by DI water
after the Ag NW networks floated up, then target substrates,
such as xerox paper, ceramics, clothes or live leaves, were
inserted into the DI water and placed below the networks,
as illustrated in figure S1 (available at stacks.iop.org/Nano/
24/335202/mmedia). Next, the solution was drained slowly
until the Ag NW networks laid on the substrates. Finally, the
samples were dried at 40 ◦C.

3. Results and discussion

Ultralong Ag NWs were synthesized through an optimized
CuCl2-mediated polyol method. In this optimized process,
we used a longer chain PVP to induce the formation of
longer Ag NWs than a previous method using short chain
PVP [12, 22], as the Ag NW growth mechanism follows
the coordination of silver ions with oxygen atoms along the
chain of PVP [30]. No stirring during the Ag NW growth
process in the oven at 145 ◦C increases the possibility of
bonding of the formed seeds and silver atoms [31]. The
lower reaction temperature (145 ◦C) adopted and the longer
reaction time (7 h) decreased the nucleation rate and left more
silver precursor available to increase the growth length [14].
Finally, Cu(NO3)2 was used as an additive instead of CuCl2

(see figure S2 available at stacks.iop.org/Nano/24/335202/
mmedia). Figures 1(a) and (b) show SEM images of randomly
oriented Ag NWs produced by dripping a drop of Ag NW ink
(inset in figure 1(a)) on the Si substrate. The smooth Ag NWs
possess high crystallinity with the growth direction shown in
the TEM image in figure 1(c) and the inserted selected area
electron diffraction (SAED) pattern. A thin amorphous PVP
layer coating on the surface could be clearly observed, which
is consistent with previous reports [32, 33]. The statistics of
the length and diameter distributions of Ag NWs given in
figure 1(d) show that the average diameter is ∼223 nm (inset
in figure 1(d)), and it is worth noting that the average length up
to∼ 143 µm is much longer than those grown by a successive
multistep growth (SMG) method [12]. Longer NWs will result
in a lower Rs and better T and mechanical flexibility.

The Ag NWs were first coated on the glass substrate
using an improved Meyer rod method for TE fabrication, as
illustrated in figure 2(a). We found rolling the Meyer rod
along two orthogonal directions enabled the more efficient
interconnection of Ag NWs (figure 2(b)) [34]. Compared
with single-direction rolling (figure S3(a) available at stacks.
iop.org/Nano/24/335202/mmedia), all of the quasi-parallel
NWs could be well bridged (figures S3(b) and (c) available
at stacks.iop.org/Nano/24/335202/mmedia), implying more
pathways formed in the network for electron transport, and
leading to improved robustness of the TEs as well.
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It has been reported that the residual insulating PVP
layer coating on the Ag NWs that we observed in the TEM
image would drastically affect the conductivity of the TEs
[16, 24, 32], thus many approaches have been used to remove
the PVP layer [12, 14, 24, 25]. In our study, we employed a
room-temperature plasma to achieve this goal [35], which is
a more advantageous way due to the fact that it causes hardly
any damage to the flexible polymer substrates as compared
with optothermal annealing using a broadband lamp [27].
Another great advantage is that it can eliminate the PVP
layer on the Ag NWs completely, not just at the junctions
between two neighboring Ag NWs (figure S4 available
at stacks.iop.org/Nano/24/335202/mmedia). This feature is
highly attractive for applications of the Ag NW TEs as the
top electrodes in solar cells. The effect of plasma treatment
on the PVP layer was verified by an FT-Raman spectrometer
(figure 2(d)), in which the peak of the asymmetric stretching
vibration of CH2 in the skeletal chain of PVP that is located at
2940 cm−1 vanished entirely after 1 h irradiation [32]. The
FT-Raman spectra of Ag NW TEs treated with plasma for
1–5 min are presented in figure S5 (available at stacks.iop.
org/Nano/24/335202/mmedia). In addition, plasma irradiation
was also capable of inducing self-welding of the Ag NWs,
as we can see clearly in figure 2(c) and figure S6 (available
at stacks.iop.org/Nano/24/335202/mmedia), implying that the
contact resistances of Ag NWs junctions could be reduced.
The welding behavior could improve the conductivity of the
network as well, and significantly reinforce the mechanical
robustness of transferable TEs. Figure 2(e) shows the effect
of plasma treatment time on the value of Rs of Ag NW TEs
quantitatively using a sample with a weight density of around
37.1 mg m−2. In the first minute, the value of Rs decreased
dramatically owing to the rapid removal of insulating PVP
on the NWs, and the following gentle reduction of the curve
indicates the residual PVP was completely cleaned with the
junctions welded together. Finally, Rs was reduced by six
orders of magnitude and lowered to tens of ohms. As shown
in figure 2(f), the corresponding optical transmittance spectra
was also investigated by measuring the typical T of five
samples with different weight densities. We can see that T was
inversely proportional to the weight density at a wavelength
of 550 nm, but still retained a high value even under a
large weight density. The flat curves without absorption
peaks confirm their excellent transparent properties across the
visible range.

As a non-continuous network, equation (1) was used to
link T to the dimensions of the NWs [14]:

T = 1− 2aNLr (1)

where a is a fitting parameter accounting for the diameter- and
wavelength-dependent optical properties of the NWs, L and
r are the length and radius of the NWs respectively, and N,
the number density of Ag NWs (number of NWs per square
meter), can be expressed as:

N = ms/(πr2Lρ) (2)

where ms is the weight density of Ag NWs (weight of NWs
per square meter) and ρ is the density of silver. Combining

equations (1) and (2), T can be expressed as:

T = 1− 2a/(πrρ)ms. (3)

We can observe the inverse linear relationships between
T and the radius of the Ag NWs when ms and a are
constant. Using the fitting formula T = b − (2a/πrρ)ms, a
and b can be found to be 1.73 and 99.1% respectively, with
R2
= 0.991 and Pearson’s r = −0.997 (inset in figure 2(f)).

The value of a is related to the scattering efficiency of
the Ag NWs [14], and the value of b closely approximates
the theoretical value of 100%, which originates from an
accurate calculation of ms [24]. Since the measurement of T
was generally accurate, the experimental error came mainly
from the measurement of ms. The relationship between the
experimentally determined Rs and the normalized number
density N/Nc − 1 was also plotted to compare our results
with the theoretical prediction (figure S7 available at stacks.
iop.org/Nano/24/335202/mmedia), where Nc is the critical
number density [14]. The conductivity exponent was extracted
as t = 1.34, which is in good agreement with the theoretical
value and reported result for a 2D NW network [14, 36]. This
fact implied that the junction resistance of Ag NWs was very
close to the body resistance [36] and proved that the Ag NWs
had been welded tightly with a very low contact resistance
after plasma treatment.

To evaluate the performance of Ag NW TEs as an
applicable electrode, a relationship between T and Rs in the
percolation regime is proposed in figure 2(g). The ratio of DC
conductivity (σdc) to optical conductivity (σop) is usually used
as a figure-of-merit (FOM) to evaluate the quality of TEs, and
a higher FOM leads to a higher T with a lower Rs. According
to equation (4) [17],

T =

(
1+

188.5
Rs

σop

σdc

)−2

. (4)

The FOM of our sample was calculated to be as high as 471
(inset in figure 2(g)), which exceeded many reported results,
such as 459 for Ag NWs [12], 100 for short Cu NWs [13],
125 for long Cu NWs [37], 102 for graphene [8] and 24
for single-wall CNTs [38]. This high FOM of the Ag NW
network mostly results from the long length of the Ag NWs.
According to the simulations of the conductivity in stick
percolation [12–15, 19, 36], longer NWs required a much
lower NW number density for percolation than short NWs.
Therefore, given the constant transmittance and diameter, a
network of longer NWs possesses a lower sheet resistance.
In addition, a network of longer NWs has fewer junctions
and thus a lower junction resistance than a network of short
NWs. Moreover, plasma treatment at room temperature can
further enhance the performance of the network. Therefore,
we believe these two factors together contributed to the high
FOM of the Ag NW TE.

In order to transfer the Ag NW TE onto other substrates,
a self-sacrificial substrate of Al-coated PET sheet was used
instead of glass, following the same process illustrated in
figure 2(a). The ultrathin freestanding Ag NW network fixed
by a thin layer of PDMS frame could float on the etching
solution without cracking, wrinkling or scattering after
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Figure 3. (a) Schematic of the Ag NW TE transfer process. (b) Optical photograph of a transferable Ag NW TE floating on the surface of
the solution. (c) Ag NW TE transferred onto the test tube with a sheet resistance of about 13 �/sq and (d) the corresponding SEM image.
(The TE is marked by the dashed box.)

completely dissolving the Al layer, as shown in figures 3(a)
and (b), and the original properties of the Ag NW TEs could
be maintained.

Various substrates, including a hydrophobic bamboo
leaf, flexible PET, ceramic plate, xerox paper, and rough
cloth were chosen for the transfer of the as-prepared TEs,
with Rs values of about 19 �/sq, 16 �/sq, 12 �/sq,
25 �/sq, and 233 �/sq, respectively (figure S8 available
at stacks.iop.org/Nano/24/335202/mmedia). The freestanding
TEs can also stick on a curved surface, such as the test
tube shown in figure 3(c) with a resistance of 13 �/sq,
which cannot be achieved by previously reported methods
[3, 27, 28, 39, 40]. In most cases, the freestanding Ag
NW electrode maintained a good transmittance after transfer
(T = 91%,Rs = 13 �/sq) (figure S9 available at stacks.
iop.org/Nano/24/335202/mmedia); values better than other
carbon-based transferable electrodes such as graphene (T =
80%,Rs = 280 �/sq) [7] and CNTs (T = 85%,Rs =

60 �/sq) [5].
The flexibility and stability of the Ag NW TEs are two

important properties for long-life flexible electronics. The
stability of the Ag NW TE transferred onto xerox paper under
four different bending curvatures was monitored at a fixed
voltage of 0.3 V (figure 4(a)), and each bending curvature
was maintained for 60 s, as shown in the insets. We found
the current was very stable and had no apparent change even
under a bending amplitude of 12 mm, revealing that the
conductance of the Ag NW electrode was hardly affected
by bending stress; similar behavior was also observed during
the recovery process, indicating its excellent reversibility. The
long-term stability was studied by fixing one end of the Ag
NW electrode on a resonator to bend and release it repetitively
(inset in figure 4(b)). After 10 000 bending cycles with a
2 Hz bending frequency and a 2 mm amplitude, there was
no observable Rs change. The exhibited superior mechanical
reliability of the Ag NW flexible TE can be attributed to the

electrode network that was built by ultralong Ag NWs which
could withstand more deformation than a network consisting
of shorter NWs [12, 41]. Moreover, the actual application of a
Ag NW TE as a conductor, shown in figure 4(c), demonstrated
operation of LEDs, and the I–V curve of a flexible Ag NW
TE on paper overlapped with that using a normal copper
conductor, indicating the promising potential of Ag NW
electrodes to replace conventional bulk metal electrodes.

4. Conclusion

In summary, we fabricated flexible, transparent electrodes by
means of an optimized Meyer rod coating method using an
ink with ultralong Ag NWs. The employed plasma treatment
can effectively enhance the conductivity of the Ag NW
TEs by simultaneously removing the insulating PVP layer
coating on the NWs and welding the junctions tightly. The
relationship between T and the weight density was studied
in detail, and an excellent performance of the Ag NW TEs
was found, with a FOM as high as 471. More importantly,
we successfully demonstrated an approach to transfer Ag
NW TEs onto various substrates without severe performance
degradation. We believe the obtained highly robust and stable
flexible TEs have broad applications in flexible optoelectronic
and electronic devices, and this low-cost efficient process
can be used as a generic method for the fabrication of other
transferable metal NW electrodes.
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Figure 4. The mechanical properties of a Ag NW TE transferred onto xerox paper and a real application as a conductor. (a) I–t curve of a
Ag NW TE bent with different curvatures under a constant voltage of 0.3 V. The insets labeled I–IV demonstrate the four bending states.
(b) The measurement of Rs during 10 000 bending cycles with a 2 mm bending amplitude. Insets show the bending state of the flexible
conductor. (c) Operation of the LED display using a Ag NW TE instead of a normal copper conductor.

would like to thank Mr Xianghui Zhang, Mr Xu Xiao and
Mr Qize Zhong for their inspiring suggestions. The authors
would also thank Professor Z L Wang from Georgia Institute
of Technology for his support.

References

[1] Tran H D, Li D and Kaner R B 2009 One-dimensional
conducting polymer nanostructures: bulk synthesis and
applications Adv. Mater. 21 1487–99

[2] Yin Z and Zheng Q 2012 Controlled synthesis and energy
applications of one-dimensional conducting polymer
nanostructures: an overview Adv. Energy Mater. 2 179–218

[3] Wu Z et al 2004 Transparent, conductive carbon nanotube
films Science 305 1273–6

[4] Hu L, Hecht D S and Grüner G 2004 Percolation in
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